
everywhereSoftware

7170 SEPTEMBER 2018 \\ AEROSPACETESTINGINTERNATIONAL.COM AEROSPACETESTINGINTERNATIONAL.COM // SEPTEMBER 2018

With delays and cost increases of aircraft test
programs increasingly blamed on software
problems, what technology and tactics are
available to keep software testing under control?

software testingsoftware testing
// DAVID SMITH

73AEROSPACETESTINGINTERNATIONAL.COM // SEPTEMBER 2018

D uring a modern airplane’s
flight, hundreds of millions
of lines of code will run.
Software is present almost

everywhere in the aircraft, from mundane components
like galley equipment to highly critical ones such as
flight control systems.

Each line of code has to be checked for faults. Each
software unit has to be tested to see how it integrates
with other units, and then tested at a higher systems
level. It’s a laborious process. Increasingly, cost overruns
and delays in airplane development are linked to
software testing. But it’s vital to get software right.

“If software fails, you can get awful incidents like
the flight 447 Air France A330 crash over the Atlantic
in 2009, which killed everyone on board on the way
from Brazil to Paris. It was caused by one hardware
failure, but the root of the incident was the software’s
inability to recognize and report the hardware fault,”
says Dylan Llewellyn, international sales manager at
software company QA Systems.

CRITICAL PLANNING
The amount of software on aircraft is set to increase.
For example, as engines evolve they are becoming more
software dependent. FADEC (full authority digital engine
control) engines are entirely controlled by software.
Among commercial aircraft, the A380 is well known for
having large amounts of code. But nothing compares to
the amount of code within the F-35 jet fighter, which has
been beset by long delays because of the mind-boggling
complexity of its software development.

To avoid disasters such as Flight 447, and to reduce
costs, software testing should be done as early as possible
in a development program. Massimo Bombino, an expert
in avionics software and regional manager of Southeast
Europe for Vector Software, recommends planning
software testing from “day zero” of a development

program and forming small agile teams
of software developers. These teams
should plan all the software unit testing
and integration testing from day zero to
minimize the risk of nasty surprises and
last-minute regression testing, which is
conducted when code goes wrong.

“Regression testing is a nightmare
and a big issue for the whole software
industry. It’s especially a challenge
with safety-critical aviation software.
Everything can be running perfectly,
then at the last hurdle you introduce a
new element and it fails. It’s very tricky
and time-consuming to solve unless you
have advanced technology,” says Bombino.

There are two ways to prevent
regression testing, believes Bombino. The
first is to test rigorously from the start.
But if there are too many problems and it
is too late, it is better to conduct change-
based testing. Vector Software has
technology that enables a subset of tests
to be run according to just the code changes,
thereby improving the efficiency of testing.

INDEPENDENT VERIFICATION
According to DO-178C, the primary document by which
the FAA, EASA and Transport Canada have agreed to

F-35 DELAYS CAUSED BY
UNREALISTIC GOALS AND C++
Tucker Taft, director of language research
at AdaCore, says that the F-35 Joint
Strike Fighter has become too complex
because every one of the high number of
stakeholders in the project is demanding
ambitious requirements. “All the amazing
technical qualities can be in conflict and
they keep changing their minds.”

The F-35 has taken more than two
decades to develop and has been
plagued by huge time and cost overruns.
The lifetime costs stand at an estimated
US$1.5tn, partly because of the enormous
price tag for software development and
testing. As recently as January 2018 the
Pentagon was forced to admit that there
are still close to 1,000 software faults on the
jet, but won’t say precisely what they are.

“The software development keeps
getting the blame, but the whole project
management can be seen as at fault,” Taft
says. “The program has goals that are
almost impossible to reach. The lesson
is to put a stake in the ground and say
we will build it this way and stick to it.”

Over-ambition may bear some of the
blame, but it is undeniable that software
development has also contributed. Taft
believes that writing the software in C++
has also caused the overruns. “When you
factor in the cost of debugging later on, it’s
worth doing a little more training to use a
language that’s less problematic, such as
Ada,” he says.

 1,000
Software faults
identified on the F-35
after more than 25
years of development
in January 2018

software testing

1 // As flight decks have
become digital, the testing

requirements for the
software that runs them

has increased

1

75

software testing

AEROSPACETESTINGINTERNATIONAL.COM // SEPTEMBER 2018

AUTOMATED ADVANTAGE
One of the reasons aircraft testing is so expensive is
the high cost of testing, but automating the process
can save time and money, according to Dylan Llewellyn
(pictured), international sales manager for software
testing company QA Systems.

Llewellyn says his company’s Cantata tool can test in a
month software that would otherwise take several months
to test. But the industry is resistant to using automated
tools. “Icebergs don’t move fast and outsourcing
companies don’t always inform the manufacturers
that these tools can cut expenses substantially.

“The message is always that it will take a team of
60 a year and will cost US$1m, rather than saying
you can test it quicker by licensing an automatic
tool for several months,” he says.

Cantata is qualified to test software to
DO-178C’s stipulations. It works by allowing
testers to put code into the tool and telling it
the standard it has to be tested to. Cantata
will then run the code. Users can see the
script and modify it in real time. At the end
of the process, the tool tells the testers if
the code has failed. It signals the reasons for
failure and details the lines of code at fault. “You
can test the smallest possible units of code, but it
also works for integration testing when you put lots
of smaller units together,” says Llewellyn.

8 million
Lines of code on an F-35

2 // The F-35B hovering

3 // The F-35’s sensors and
software detect and process

terrain and threats

approve all commercial software-
based aerospace systems, software
must be tested by independent
parties. The software process is
therefore mostly outsourced to third
parties, although some aircraft OEMs use separate
in-house teams. These independent parties perform
verification and validation testing to establish that
all the bugs in the code have been removed.

Tucker Taft, a computer scientist and director of
language research at software developer AdaCore, says
that another problem is that if testers find lots of faults
at the verification and validation stage, the errors can be
hard to trace back to the original software developers.

“The old-fashioned way of putting software together
until you think it’s worth testing doesn’t work with
hundreds of millions of lines of code,” says Taft. “Smart
companies today frontload their testing processes by
finding faults during design and not waiting until
integration testing.

“The most modern, agile companies use test-driven
development, where you don’t start writing code until
you’ve written the pre-imposed conditions that it must
pass. The secret is to make testing a fully fledged part
of the process.”

When Taft tests software for faults, he carries out
static analysis, in which a tester tries to mathematically
prove that errors will manifest without running the code.
Experience has taught him that certain types of software
are hard to examine using the conventional tests written
by programmers and that it can be more straightforward
to obtain formal proof of software unit’s safety using
static analysis. However, the exact opposite can be the
case with some other types of software units.

“For part of the system, you focus on mathematical
proofs and for other parts you use a more dynamic
testing strategy,” Taft says. “Customers often like a
combined strategy because they get the confidence
of mathematical proofs.”

As part of more formal testing for certification, Taft
prefers to define pre- and post-conditions for software.

“The secret is to make
testing a fully fledged
part of the process”

2 3

76

software testing

SEPTEMBER 2018 \\ AEROSPACETESTINGINTERNATIONAL.COM

Pre-conditions imply that before the software sends data
to a component, the code has to have certain properties.
Unless the software is in an appropriate state, it will not
be allowed to send the data. Testing can verify that the
pre-conditions are satisfied. Later, the post-conditions
state what predetermined data the tester should get back
from the software.

“When you use pre- and post-conditions, you can do a
lot more formal verification and determine whether the
software all fits together,” Taft says. “It makes it easier to
do integration testing, which has
always been one of the greatest
challenges, as each contractor builds
and tests in isolation, but when you
put it together something inevitably
goes wrong.”

MODELS AND FUZZ
Developments in technology are helping to reduce the
software testing workload. As well as automated testing,
the use of mathematical modeling for software testing
has evolved rapidly in recent years. It can now simulate
with great precision what an airplane will do when the
software is installed.

Large manufacturers, such as Boeing and Airbus,
have embraced the model-based approach to testing
software and have created detailed, accurate models.

These models can be shared with subcontractors so that
they can carry out hardware-in-the-loop tests, where
hardware is tested within a simulation of an aircraft’s
software systems. “These simulations require a lot of
horsepower, so it’s not trivial to create them, but they’re
worth their weight in gold,” Taft says.

Another trend is ‘fuzz testing’, which involves
blasting the software with large amounts of random
data, called fuzz, to try to break it.

Taft compares fuzz testing to the tricks white-hat
hackers use to expose weaknesses in corporate security
systems. “Fuzz testing hasn’t yet reached the practical
level, but there’s a lot of research in academic circles and
I think it will play a big part in future testing. You never

know when a hardware failure might
generate random data, or it could be a
hacker trying to break in,” he says.

Despite these technical advances, most
aerospace companies find software testing

onerous. QA System’s Dylan Llewellyn was part of a team
testing the power distribution software on the 777X. The
code was written in blocks and tested to ensure that
when it was added to the mix it didn’t have a negative
effect on what was already there. “If you have bad code in
legacy code it causes havoc,” he says. “That’s why when
they went from the Boeing 777-300 to the 777X, they
didn’t use any of the legacy code.”

PART OF THE PROCESS
The procedure was fairly typical, with multiple teams,
each consisting of four or five engineers each, working
independently to develop and test the software.
Meanwhile a team of around 60 independent experts
carried out the verification and validation work.

“There was a huge amount of testing done for the
777X. We had dozens of engineers testing one block of
code for 10 months,” says Llewellyn

Testing of the power distribution software started on
what is called non-flyable code A. The teams continued
all the way to non-flyable code W, testing various units
and integrations. By the time they got to that stage they
had tested everything, including at systems level. The
next stage was to test the flyable Y level. The teams then
installed the software on an iron bird and tested it for
redundancies and multiple systems failures before it was
installed in a test aircraft.

With software playing such an integral role in
modern airplanes, it is perhaps not surprising that
software testing is such an involving endeavor that
can often prove problematic. But as the complexity
and amount of code on aircraft increases, aerospace
companies will be forced to get to grips with software
testing through both better technology and better
management of the process. \\

 120 million
Lines of code on an A380

“When you use pre- and post-
conditions, you can do a lot

more verification”

4 // The cost of developing
the Boeing 777 is reported

to be US$800m

4

